Whipped oil stabilised by surfactant crystals.

نویسندگان

  • Bernard P Binks
  • Emma J Garvey
  • Josélio Vieira
چکیده

We describe a protocol for preparing very stable air-in-oil foams starting with a one-phase oil solution of a fatty acid (myristic acid) in high oleic sunflower oil at high temperature. Upon cooling below the solubility limit, a two-phase mixture consisting of fatty acid crystals (length around 50 μm) dispersed in an oil solution at its solubility is formed which, after whipping, coat air bubbles in the foam. Foams which do not drain, coalesce or coarsen may be produced either by increasing the fatty acid concentration at fixed temperature or aerating the mixtures at different temperatures at constant concentration. We prove that molecular fatty acid is not surface-active as no foam is possible in the one-phase region. Once the two-phase region is reached, fatty acid crystals are shown to be surface-active enabling foam formation, and excess crystals serve to gel the continuous oil phase enhancing foam stability. A combination of rheology, X-ray diffraction and pulsed nuclear magnetic resonance is used to characterise the crystals and oil gels formed before aeration. The crystal-stabilised foams are temperature-sensitive, being rendered completely unstable on heating around the melting temperature of the crystals. The findings are extended to a range of vegetable oil foams stabilised by a combination of adsorbed crystals and gelling of the oil phase, which destabilise at different temperatures depending on the composition and type of fatty acid chains in the triglyceride molecules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Whipped oil stabilised by surfactant crystals† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc00046k Click here for additional data file.

We describe a protocol for preparing very stable air-in-oil foams starting with a one-phase oil solution of a fatty acid (myristic acid) in high oleic sunflower oil at high temperature. Upon cooling below the solubility limit, a two-phase mixture consisting of fatty acid crystals (length around 50 mm) dispersed in an oil solution at its solubility is formed which, after whipping, coat air bubbl...

متن کامل

Aggregation in a high internal phase emulsion observed by SANS and USANS

As part of a wider study into high internal phase emulsions, we have prepared and studied by SANS and USANS the structure of an unstable emulsion consisting of 90% by volume saturated ammonium nitrate dispersed as micron-scale droplets in hexadecane, stabilised by the surfactant Pluronic L92. Similar emulsions produced using polyisobutylene-based surfactants, reported earlier, are highly stabil...

متن کامل

Protein-Stabilized Emulsions and Whipped Emulsions: Aggregation and Rheological Aspects

By exploiting the combined gelling and stabilizing properties of the milk protein casein, creamy foam structures can be made by whipping air into a matrix of flocculated protein-coated emulsion droplets. Acidified sodium caseinate-stabilized emulsions based on liquid triglyceride oil give rise to elastic foams of low rigidity and high apparent fracture strain. Replacing all-liquid droplets with...

متن کامل

The Use of Biobased Surfactant Obtained by Enzymatic Syntheses for Wax Deposition Inhibition and Drag Reduction in Crude Oil Pipelines

Crude oil plays an important role in providing the energy supply of the world, and pipelines have long been recognized as the safest and most efficient means of transporting oil and its products. However, the transportation process also faces the challenges of asphaltene-paraffin structural interactions, pipeline pressure losses and energy consumption. In order to determine the role of drag-red...

متن کامل

Title : Thermal Destabilisation of Bitumen - in - Water Emulsions - A Spinning Drop Tensiometry

Nonionic surfactant-stabilised oil-in-water emulsions offer a potentially useful vehicle for transporting heavy crude oils from oilfields to refineries or distribution terminals. Prior to refining, separation of the oil from the emulsion is necessary. Previous studies have suggested that heating the emulsion is sufficient for destabilisation and recovery of the oil. The present work examines th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemical science

دوره 7 4  شماره 

صفحات  -

تاریخ انتشار 2016